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ABSTRACT:The choice of principal dimensions of turbine rotor for a given set of inlet design specification can be found by solving 

aerodynamic equations. An analytical method is indeed difficult and can be very time consuming, especially if the complete pr ocedure has 

to be repeated for different cases. In view of this, numerical optimization technique can be useful tool to problems involving a large number 

of variables. Among the heuristics algorithms, most common and used ones are the Evolutionary algorithms, and in particular the Genetic 

algorithm (GA). They are most robust, since they can be used for real and discrete variables, in highly or weakly non-linear problem types. 

In this paper an attempt is made to solve the numerical optimization problem for radial flow gas turbine rotor using Genetic Algorithms. 
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1     INTRODUCTION                                                                     
as turbines are one of the key energy producing 

devices of our generation. A radial turbine stage is 

differential form an axial turbine stage by having the fluid 

undergo a significant change in passing through the rotor 

[6]. A preliminary design and analysis procedure allows the 

key turbine dimensions to be specified and the performance 

predicted at an early stage [10]. The complete design of the 

inward flow radial (IFR) turbine rotor requires the aero-

thermodynamic, structural and manufacturing criteria to be 

satisfied simultaneously. The design specifications 

normally include the mass flow rate of the working fluid, 

pressure ratio, and in some cases, rotational speed [1]. 

Radial turbine design is dictated by criteria like specific 

speed and/or velocity ratios. For small capacity plants the 

size of the turbine wheel needs to be reduced and thus the 

rotational speed increased in order to reach a high 

efficiency [2].  The choice of the principal dimensions of a 

turbine rotor for a given set of inlet design specifications 

can be found by solving aerodynamic equations. An 

analytical method is indeed difficult and can be very time 

consuming, especially if the complete procedure has to be 

repeated for different cases. In view of this, numerical 

optimization techniques can be a useful tool to problems 

involving a large number of variables [2]. The freedom of 

the choice of tip diameter d2 and the tip width of the rotor 

b2 that would be necessary for optimum isentropic  

 

efficiency of the turbine stage is restricted by the specified 

rotational speed and power output [1]. Hence, an 

optimization procedure will be a useful tool to determine 

the principal dimensions of the rotor.  

Optimization is the act of obtaining the best result under 

given circumstances. In design of any engineering system 

objective is to either minimize the effort or maximize the 

desired benefit, since the effort required or the benefit 

desired in any practical situation can be expressed as a 

function of certain decision variables. Among the heuristics 

algorithms, the most common and used ones are the 

Evolutionary Algorithms, and in particular the Genetic 

Algorithms (GA)[9]. They are the most robust, since they 

can be used for real and discrete variables, in highly or 

weakly non-linear problem types, for global search or 

refinement, and also for the resolution of multi-objective 

problems. GA’s are fundamentally different than other 

optimization techniques. In this paper an attempt is made 

to solve the non-linear optimization problem for inward 

flow radial turbine described in the past literature using 

Genetic Algorithms for given inlet design speciation. In this 

paper, the given design conditions for the turbine are a 

power of 60 KW running at 60 000 rpm. 
 

2 OPTIMIMUM CHOICE OF PRINCIPAL DIMENSIONS 

AND NUMBER OF BLADES 
The choice of the principal dimensions of a turbine rotor for 

a given set of inlet design specifications, as shown in Table 

1, can be found by solving equations (1) to (4). An analytical 

method is indeed difficult and can be very time consuming, 

especially if the complete procedure has to be repeated for 

different design cases. 
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where the blockage factor at the rotor inlet can be given by  
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where the blockage factor at the rotor inlet can be given by  
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Table 1. Input data at design point of IFR turbine 

Mass flow rate, skgm 572.0


 

Pressure ratio 6.3
e

i

P

P  

Inlet stagnation 

temperature 
kTi 1000  

Rotational speed rpmN 000,60  

Turbine efficiency 87.0tt  

In view of this an optimization technique can be a 

useful tool to problems involving large number of 

variables. Many algorithms have been described in [14]. 

Genetic algorithm is one of these for solving constrained 

non-linear optimization problem. This program has been 

widely used for most of engineering problems. An 

adoption of this numerical optimization technique to the 

design of the IFR turbine rotor is now applied and 

described.  

The generic mathematical formulation of an optimization 

problem is thus: 

Find X =  

That maximizes or minimizes,  f (X) 

Subjected to the constraints: 

gj (X) <0,     j=1, 2…m 

 

hj (X) =0,  j=1, 2… p 

Where X is an n-dimensional vector called vector of the 

design variables, f(X) is defined as the Objective function, 

and the constraints gj(X), hj(X) are inequality constraints 

and equality constraints respectively. The latter problem is 

called constrained optimization problem, while if the 

constraints are not present, the problem is called 

unconstrained optimization problem. 

To illustrate the working principles of GA’s, we first 

consider an unconstrained optimization problem. Later, we 

shall discuss how GA’s can be used to solve a constrained 

optimization problem. Let us consider the following 

optimization problem: 

Maximize f (x), 

xi (L)   xi xi (U), i=1, 2…N. 

Although a maximization problem is considered here, a 

minimization problem can also be handled using GA. In 

order to use GA to solve the above problem, variables xi’s 

are first code in some string structures. It is important to 

mention here that the coding of the variables is not 

absolutely necessary. There exists some study’s where GA’s 

are directly used on variables themselves, but here we shall 

ignore the exceptions and discuss the working principle of 

simple genetic algorithm. Binary coded strings1’s and 0’s 

are mostly used. The length of the string is usually 

determined according to the desired solution accuracy. 

GA’s mimic the survival of the fittest principle of 

nature to make a search process. Therefore, GA’s are 

naturally suitable for solving maximization problem. 

Minimization problems can also be converted in to 

maximization problems by some suitable transformation; in 

general, a fitness function F(x) is first derived from the 

objective function and used in successive genetic 

operations. Certain genetic operators require that the fitness 

function be non-negative, although certain operator’s do 

not have this requirement. For the maximization problems 

the fitness function can be considered to be same as the 

objective function or F (x) =f (x). For the minimization 

problems, the fitness function is an equivalent 

maximization problem chosen such that the optimum point 

remains unchanged. A number of such transformations are 

possible. The fitness function F (x) =1/ (1+f (x)) is often used.   
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This transformation does not alter the location of the 

minimum, but converts a minimization problem to an 

equivalent maximization problem. The fitness function 

value of the string is known as the string’s fitness. 

 The operation of GA begins with a population of 

random strings representing design or decision variables. 

There after, each string is evaluated to find the fitness 

value. Three main operators – reproduction, cross over, and 

mutation to create a new population of points then operate 

the population. The new population is further evaluated 

and tested for termination. If the termination criterion is not 

met, the population is iteratively operated by the above 

three operators and evaluated. This procedure is continued 

until the termination criterion is met. One cycle of these 

operations and the subsequent evaluation procedure is 

known as generation in GA’s technology. Genetic algorithm 

has also been used to solve constrained optimization 

problems. Although different methods to handle 

constraints have been suggested, penalty function method 

has been mostly used. In penalty function method, a 

penalty term corresponding to the constraint violation is 

added to the objective function. In most cases, bracket 

operator term is used [14]. In constrained minimization 

problem, the objective function f (x) is replaced by the 

penalized function: 
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Where uj and vk are penalty coefficients, which are usually 

kept constant throughout GA simulation. The fitness 

function is formed by the usual transformation: 
  xPxF  11)( . The final task of the formulation 

procedure is to set the minimum and maximum bounds on 

each design variable Since GA s is population based search 

techniques; therefore the final population converges to a 

region, rather to point. 

 

3 CONSTRAINED OPTIMIZATION PROBLEM FOR 

TURBINE ROTOR 
The frame size and weight of an IFR turbine is 

often an important parameter consideration, in view of this, 

the size of the turbine plays an important role in 

determining the overall size of such turbine. Therefore the 

aim is to minimize the rotor tip diameter d2, and this can be 

considered a constraint optimization problem. The 

procedure to solve such a problem is described as follows, 

 

Selection of Main Principal Parameters of a Turbine Rotor. 

The choices of selecting the principal dimensions (Design 

Variables) of a turbine rotor to solve this optimization 

problem are: 
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where d2 = rotor tip diameter, u2/cs = velocity ratio, 2 = 

absolute flow angle at rotor inlet, 2 = cw2/u2 = loading 

factor, M2 = Mach no. at rotor inlet, b2/d2 = width to tip 

diameter ratio, Mer = Mach no. at exducer tip diameter, e = 

relative flow angle at exducer tip diameter, de/d2 = exducer 

to rotor tip diameter ratio, and dh/d2 = hub to tip diameter 

ratio. 

Formulation of the Objective Function. 

 The main objective of problem is to minimize the 

rotor tip diameter and it can be stated as Minimize rotor tip 

diameter,  

  2dxf   

Formulation of Equality and Inequality constraints 

(i) Equality constraints 
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These equality constrained are obtained by substituting the 

given inlet design specification in to equation (1) to (4).  

 (ii) Side constraints 

02.0)1(5  Xg , 

0707.0)2(6  Xg , 

021)3(7  Xg , 

01)4(8  Xg , 

01)5(9  Xg , 

015.0)6(10  Xg , 

01)7(11  Xg , 

0)8(2512  Xg , 

075.0)9(13  Xg , 
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                        0)10(25.014  Xg  

 A computer program has been developed for 

Genetic algorithm to solve this non-linear optimization 

problem  

4  OPTIMIZATION RESULTS 
The optimization computer program was run for 

different number of blades ranging from 12 to 20, in 

accordance with the assumed efficiency. The final out put 

results for each run give the numerical values of the matrix 

X. Fig.1 to Fig.7 shows the variation of maximum fitness 

value over the number of generation for different number 

of blades ranging from 12 to 17 and the procedure is 

repeated for remaining number blades and convergence 

criteria is considered. These graphs show that, the  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig1.Fittness Vs Generations for 12 Blades 

 

 

 

 

 

 

 

 

 

 

 
Fig2.Fittness Vs Generations for 13 Blades 

 

 

 

 

 

 

 

 

 

 

 
Fig3.Fittness Vs Generations for 14 Blades 

 

 

 

 

 

 

 

 

 

 

 
Fig4.Fittness Vs Generations for 15 Blades 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig5.Fittness Vs Generations for 16 Blades 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig6.Fittness Vs Generations for 17 Blades 

 

Convergence criteria are reached around 350 to 400 

generations for different number of blades. And the 

optimum criterion is obtained where the fitness value at 

each generation is converged and gives the optimum values 

of the design variables for different number of blades
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Table 2 :  Optimum values of  the design variables 

for  di f ferent no.  of  blades based on opti mization 

pr ogram 
Bla 

de 
12 13 14 15 16 17 18 19 20 

X1 
16.

8 
16.9 17.0 17.0 17.0 17.0 17.0 17.0 17.0 

X2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

X3 
19.

0 
18.5 19.0 18.0 18.0 18.0 18.0 19.0 19.0 

X4 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.8 0.8 

X5 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 

X6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

X7 0.9 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.9 

X8 
25.

0 
25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

X9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

X10 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 

Table 2 gives optimum values of design variables 

obtained after running the program for Genetic Algorithm 

for different number of blades. Fig 7 and Fig 8 shows the 

objective function d2 and blade width b2 plotted against the 

number of blades. It was found that the change in rotor tip 

diameter and blade width is relatively small over the 

number of blades ranges from 12 to 20 as shown in the plot. 

Therefore the scale has been enlarged to show clearly the 

trends of both b2 and d2. It shows that the minimum value of 

d2 occur at blade number 12, even tough the difference is 

very small and can be ignored over total blade range. As 

one would expect the tip width increases over the blade 

range because increasing the number of blades will reduce 

the flow passage area. To keep the mass flow rate the same 

the blade width must increase 

      

 
Fig 7 Variation of rotor tip diameter vs no. of blades 

 
Fig 8 Variation of  blade width vs no.  of  blades  

Table 3:  Design data out put for  turbine rotor  

Design 

Parameters 
Design Values 

Nb 12 

d2 16.824cm 

b2 0.8984cm 

de 10.9658cm 

dh 4.2547cm 

α2 190 

βe 250 

It was reported by A. Whitfield [11] that the 

maximum efficiency was reached with the number of 

blades Nb  = 17. The corresponding values of d2 = 16.975cm 

and blade width b2 = 1.35cm, respectively, which does not 

differ much at number of blades in the range of 12 and 20 

as shown in the Fig 8. The design data out put of the 

turbine rotor obtained using the optimization technique is 

given in the Table 3. It should be noted her that the turbine 

efficiency term is assumed as 0.87. 

 

5   CONCLUSION 
The optimization computer program was run for 

different number of blades ranging from 12 to 20, in 

accordance with the assumed efficiency. The optimum 

values of design variables are obtained after running the 

program for Genetic Algorithm .It is found that only very 

few best individuals are there in first few generations but 

later reproduction operation which is based upon the best 

individual, cross over and mutation operation leads to fill 

successive generations with only the best individuals those 

individuals which violate the constraints have low fitness 

value and those which do not violate the constraints have 

high fitness values. Among that individual, which does not 

violate the constraints, the best individual is selected which 

will have optimum value.  
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TABLE4 
NOMENCLATURE  

Quantity Magnitude 

 

b - Blade width in mm or cm 

Bf - Blockage factor 

C - Absolute flow velocity in m/sec 

Cp - Specific heat capacity at constant            

                                             pressure KJ/Kg K. 

d - Diameter in cm or mm 

m
.  - Mass flow rate Kg/s 

M - Absolute Mach Number 

Mr  - Relative Mach Number 

N - Rotational speed, rpm 

Nb - Number of Blades 

Re - Reynolds number 

t - Blade thickness mm/cm 

T - Stagnation temperature 

U - Rotor tip velocity m/s 

 - Absolute flow angle relative to axial  

                               direction 

 - Relative flow angle relative to axial    

                               direction 

 - Ratio of specific heats 

 - Efficiency 

 - Angular velocity, rad/sec  

Subscripts: 

0 - Stagnation condition 

1 - rotor outlet station at mean 

2 - rotor inlet station 

e - exit condition, exducer 

h - hub 

i - inlet condition 

ts -  total –to-static 

tt - total – to –total   


